Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Nat Cancer ; 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38429414

RESUMO

Successful immunotherapy relies on triggering complex responses involving T cell dynamics in tumors and the periphery. Characterizing these responses remains challenging using static human single-cell atlases or mouse models. To address this, we developed a framework for in vivo tracking of tumor-specific CD8+ T cells over time and at single-cell resolution. Our tools facilitate the modeling of gene program dynamics in the tumor microenvironment (TME) and the tumor-draining lymph node (tdLN). Using this approach, we characterize two modes of anti-programmed cell death protein 1 (PD-1) activity, decoupling induced differentiation of tumor-specific activated precursor cells from conventional type 1 dendritic cell (cDC1)-dependent proliferation and recruitment to the TME. We demonstrate that combining anti-PD-1 therapy with anti-4-1BB agonist enhances the recruitment and proliferation of activated precursors, resulting in tumor control. These data suggest that effective response to anti-PD-1 therapy is dependent on sufficient influx of activated precursor CD8+ cells to the TME and highlight the importance of understanding system-level dynamics in optimizing immunotherapies.

2.
Cancer Discov ; 13(12): 2610-2631, 2023 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-37756565

RESUMO

Cancer mortality primarily stems from metastatic recurrence, emphasizing the urgent need for developing effective metastasis-targeted immunotherapies. To better understand the cellular and molecular events shaping metastatic niches, we used a spontaneous breast cancer lung metastasis model to create a single-cell atlas spanning different metastatic stages and regions. We found that premetastatic lungs are infiltrated by inflammatory neutrophils and monocytes, followed by the accumulation of suppressive macrophages with the emergence of metastases. Spatial profiling revealed that metastasis-associated immune cells were present in the metastasis core, with the exception of TREM2+ regulatory macrophages uniquely enriched at the metastatic invasive margin, consistent across both murine models and human patient samples. These regulatory macrophages (Mreg) contribute to the formation of an immune-suppressive niche, cloaking tumor cells from immune surveillance. Our study provides a compendium of immune cell dynamics across metastatic stages and niches, informing the development of metastasis-targeting immunotherapies. SIGNIFICANCE: Temporal and spatial single-cell analysis of metastasis stages revealed new players in modulating immune surveillance and suppression. Our study highlights distinct populations of TREM2 macrophages as modulators of the microenvironment in metastasis, and as the key immune determinant defining metastatic niches, pointing to myeloid checkpoints to improve therapeutic strategies. This article is featured in Selected Articles from This Issue, p. 2489.


Assuntos
Neoplasias da Mama , Neoplasias Pulmonares , Camundongos , Humanos , Animais , Feminino , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Neoplasias Pulmonares/patologia , Pulmão/patologia , Macrófagos , Microambiente Tumoral , Metástase Neoplásica/patologia , Glicoproteínas de Membrana , Receptores Imunológicos
3.
Nat Med ; 29(5): 1191-1200, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37106166

RESUMO

Erythropoietin (Epo) is the master regulator of erythropoiesis and oxygen homeostasis. Despite its physiological importance, the molecular and genomic contexts of the cells responsible for renal Epo production remain unclear, limiting more-effective therapies for anemia. Here, we performed single-cell RNA and transposase-accessible chromatin (ATAC) sequencing of an Epo reporter mouse to molecularly identify Epo-producing cells under hypoxic conditions. Our data indicate that a distinct population of kidney stroma, which we term Norn cells, is the major source of endocrine Epo production in mice. We use these datasets to identify the markers, signaling pathways and transcriptional circuits characteristic of Norn cells. Using single-cell RNA sequencing and RNA in situ hybridization in human kidney tissues, we further provide evidence that this cell population is conserved in humans. These preliminary findings open new avenues to functionally dissect EPO gene regulation in health and disease and may serve as groundwork to improve erythropoiesis-stimulating therapies.


Assuntos
Anemia , Eritropoetina , Animais , Humanos , Camundongos , Anemia/genética , Eritropoese/genética , Eritropoetina/genética , Rim/metabolismo , RNA/metabolismo
4.
Int J Rheum Dis ; 26(5): 965-967, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36599652

RESUMO

We report the case of a 65 year old female patient, presenting with a combination of bilateral hearing loss, otalgia, and hyperacusis. Pure tone audiometry revealed mixed bilateral hearing loss. Conventional cranial imaging tests failed to show a significant brain pathology, but fat-suppressed T1-weighted gadolinium-enhanced magnetic resonance imaging scan displayed a diffuse infiltrative skull base process, extending from the nasopharynx to the jugular fossa, and encasing the internal carotid artery. The latter findings, besides elevated inflammatory markers and a positive perinuclear anti-neutrophil cytoplasmic antibody (p-ANCA) led to the diagnosis of ANCA-associated vasculitis. Additional disease manifestations sequentially appeared, including a right peripheral nerve palsy, aortitis, hepatitis, peripheral neuropathy, and uveitis. Therapy with corticosteroids, azathioprine, and then cyclophosphamide brought no evident benefit, but rituximab led to impressive clinical and radiologic improvement.


Assuntos
Vasculite Associada a Anticorpo Anticitoplasma de Neutrófilos , Anticorpos Anticitoplasma de Neutrófilos , Feminino , Humanos , Idoso , Perda Auditiva Bilateral , Vasculite Associada a Anticorpo Anticitoplasma de Neutrófilos/diagnóstico , Ciclofosfamida/uso terapêutico , Rituximab/uso terapêutico
6.
Front Cell Infect Microbiol ; 12: 968739, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36118038

RESUMO

Bladder cancer is the 4th leading cancer in men. Tumor resection followed by bladder instillation of Bacillus Calmette-Guérin (BCG) is the primary treatment for high-risk patients with Non-Muscle Invasive Bladder Cancer (NMIBC) to prevent recurrence and progression to muscle-invasive disease. This treatment, however, lacks efficiency and causes severe adverse effects. Mannose residues are expressed on bladder surfaces and their levels were indicated to be higher in bladder cancer. Intravesical instillations of a recombinant Pseudomonas aeruginosa (PA) overexpressing the mannose-sensitive hemagglutination fimbriae (PA-MSHA), and of a mannose-specific lectin-drug conjugate showed efficiency against NMIBC in murine models of bladder cancer. Urothelial mannosylation facilitates bladder colonization by Uropathogenic E. coli (UPEC) via the interaction with the FimH mannose lectin, positioned at the tip of type 1 fimbria. A recombinant BCG strain overexpressing FimH on its outer surface, exhibited higher attachment and internalization to bladder cancer cells and increased effectivity in treating bladder cancer in mice. Investigating the pattern of mannose expression in NMIBC is important for improving treatment. Here, using tissue microarrays containing multiple normal and cancerous bladder samples, and lectins, we confirm that human bladder cancer cells express high mannose levels. Using UPEC mutants lacking or overexpressing type 1 fimbria, we also demonstrate that tumor-induced hypermannosylation increases type 1 fimbria mediated UPEC attachment to human and mouse bladder cancer. Our results provide an explanation for the effectiveness of PA-MSHA and the FimH-overexpressing BCG and support the hypothesis that mannose-targeted therapy holds potential for improving bladder cancer treatment.


Assuntos
Mycobacterium bovis , Neoplasias da Bexiga Urinária , Escherichia coli Uropatogênica , Animais , Vacina BCG , Proteínas de Fímbrias/metabolismo , Humanos , Lectinas , Manose , Lectinas de Ligação a Manose , Camundongos , Pseudomonas aeruginosa/metabolismo , Neoplasias da Bexiga Urinária/patologia , Escherichia coli Uropatogênica/genética , Escherichia coli Uropatogênica/metabolismo
7.
Cell ; 185(8): 1373-1388.e20, 2022 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-35381199

RESUMO

Systemic sclerosis (scleroderma, SSc) is an incurable autoimmune disease with high morbidity and mortality rates. Here, we conducted a population-scale single-cell genomic analysis of skin and blood samples of 56 healthy controls and 97 SSc patients at different stages of the disease. We found immune compartment dysfunction only in a specific subtype of diffuse SSc patients but global dysregulation of the stromal compartment, particularly in a previously undefined subset of LGR5+-scleroderma-associated fibroblasts (ScAFs). ScAFs are perturbed morphologically and molecularly in SSc patients. Single-cell multiome profiling of stromal cells revealed ScAF-specific markers, pathways, regulatory elements, and transcription factors underlining disease development. Systematic analysis of these molecular features with clinical metadata associates specific ScAF targets with disease pathogenesis and SSc clinical traits. Our high-resolution atlas of the sclerodermatous skin spectrum will enable a paradigm shift in the understanding of SSc disease and facilitate the development of biomarkers and therapeutic strategies.


Assuntos
Escleroderma Sistêmico , Células Cultivadas , Fibroblastos/metabolismo , Fibrose , Humanos , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Escleroderma Sistêmico/tratamento farmacológico , Escleroderma Sistêmico/genética , Pele/metabolismo
8.
APMIS ; 130(5): 270-275, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35218080

RESUMO

We report a case of Staphylococcus warneri native valve endocarditis in an immunocompetent healthy adult, without known risk factors for infective endocarditis, two months following COVID-19 infection, who recovered with conservative treatment. Additionally, we reviewed previous cases of native valve endocarditis caused by Staphylococcus warneri and summarized the main clinical implications.


Assuntos
COVID-19 , Endocardite Bacteriana , Endocardite , Infecções Estafilocócicas , Adulto , Valva Aórtica , Endocardite Bacteriana/diagnóstico , Endocardite Bacteriana/tratamento farmacológico , Humanos , Infecções Estafilocócicas/tratamento farmacológico , Staphylococcus
11.
Nat Med ; 27(6): 1043-1054, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34017133

RESUMO

Non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH) are prevalent liver conditions that underlie the development of life-threatening cirrhosis, liver failure and liver cancer. Chronic necro-inflammation is a critical factor in development of NASH, yet the cellular and molecular mechanisms of immune dysregulation in this disease are poorly understood. Here, using single-cell transcriptomic analysis, we comprehensively profiled the immune composition of the mouse liver during NASH. We identified a significant pathology-associated increase in hepatic conventional dendritic cells (cDCs) and further defined their source as NASH-induced boost in cycling of cDC progenitors in the bone marrow. Analysis of blood and liver from patients on the NAFLD/NASH spectrum showed that type 1 cDCs (cDC1) were more abundant and activated in disease. Sequencing of physically interacting cDC-T cell pairs from liver-draining lymph nodes revealed that cDCs in NASH promote inflammatory T cell reprogramming, previously associated with NASH worsening. Finally, depletion of cDC1 in XCR1DTA mice or using anti-XCL1-blocking antibody attenuated liver pathology in NASH mouse models. Overall, our study provides a comprehensive characterization of cDC biology in NASH and identifies XCR1+ cDC1 as an important driver of liver pathology.


Assuntos
Células Dendríticas/imunologia , Fígado Gorduroso/imunologia , Hepatopatia Gordurosa não Alcoólica/imunologia , Receptores de Quimiocinas/genética , Animais , Células da Medula Óssea/imunologia , Células da Medula Óssea/patologia , Reprogramação Celular/genética , Reprogramação Celular/imunologia , Células Dendríticas/patologia , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Fígado Gorduroso/genética , Fígado Gorduroso/patologia , Feminino , Humanos , Fígado/imunologia , Fígado/patologia , Linfonodos/imunologia , Linfonodos/patologia , Masculino , Camundongos , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/patologia , Receptores de Quimiocinas/imunologia , Linfócitos T/imunologia , Linfócitos T/patologia
12.
Nat Med ; 27(3): 491-503, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33619369

RESUMO

Multiple myeloma (MM) is a neoplastic plasma-cell disorder characterized by clonal proliferation of malignant plasma cells. Despite extensive research, disease heterogeneity within and between treatment-resistant patients is poorly characterized. In the present study, we conduct a prospective, multicenter, single-arm clinical trial (NCT04065789), combined with longitudinal single-cell RNA-sequencing (scRNA-seq) to study the molecular dynamics of MM resistance mechanisms. Newly diagnosed MM patients (41), who either failed to respond or experienced early relapse after a bortezomib-containing induction regimen, were enrolled to evaluate the safety and efficacy of a daratumumab, carfilzomib, lenalidomide and dexamethasone combination. The primary clinical endpoint was safety and tolerability. Secondary endpoints included overall response rate, progression-free survival and overall survival. Treatment was safe and well tolerated; deep and durable responses were achieved. In prespecified exploratory analyses, comparison of 41 primary refractory and early relapsed patients, with 11 healthy subjects and 15 newly diagnosed MM patients, revealed new MM molecular pathways of resistance, including hypoxia tolerance, protein folding and mitochondria respiration, which generalized to larger clinical cohorts (CoMMpass). We found peptidylprolyl isomerase A (PPIA), a central enzyme in the protein-folding response pathway, as a potential new target for resistant MM. CRISPR-Cas9 deletion of PPIA or inhibition of PPIA with a small molecule inhibitor (ciclosporin) significantly sensitizes MM tumor cells to proteasome inhibitors. Together, our study defines a roadmap for integrating scRNA-seq in clinical trials, identifies a signature of highly resistant MM patients and discovers PPIA as a potent therapeutic target for these tumors.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/patologia , Análise de Célula Única/métodos , Adulto , Idoso , Idoso de 80 Anos ou mais , Anticorpos Monoclonais/administração & dosagem , Estudos de Casos e Controles , Dexametasona/administração & dosagem , Resistencia a Medicamentos Antineoplásicos , Feminino , Humanos , Lenalidomida/administração & dosagem , Masculino , Pessoa de Meia-Idade , Recidiva Local de Neoplasia , Oligopeptídeos/administração & dosagem , Resultado do Tratamento
13.
Oncoimmunology ; 8(6): e1581531, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31069151

RESUMO

Fusobacterium nucleatum (F. nucleatum) is an oral anaerobe found to be enriched in colorectal cancer (CRC). Presence of F. nucleatum in CRC has been correlated with resistance to chemotherapy and poor prognosis. We previously demonstrated that the Fap2 outer-surface protein of F. nucleatum binds and activates the human inhibitory receptor TIGIT which is expressed by T and Natural Killer (NK) cells, and inhibits anti-tumor immunity. Here we show that F. nucleatum also binds and activates the human inhibitory receptor CEACAM1 leading to inhibition of T and NK cells activities. Our results suggest that using CEACAM1 and TIGIT inhibitors and specific targeting of fusobacteria should be considered for treating fusobacteria-colonized tumors.

14.
Oncoimmunology ; 8(4): e1553487, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30906650

RESUMO

We previously showed that the colorectal cancer colonizing bacterium Fusobacterium nucleatum protects tumors from immune cell attack via binding of the fusbacterial Fap2 outer-membrane protein to TIGIT, a checkpoint inhibitory receptor expressed on T cells and NK cells. Helicobacter pylori, the causative agent for peptic ulcer disease, is associated with the development of gastric adenocarcinoma and MALT lymphoma. The HopQ outer-membrane adhesin of H. pylori was recently shown to bind carcinoembryonic antigen-related cell adhesion molecules (CEACAMs) including CEACAM1, an inhibitory receptor expressed mainly by activated T and NK cells. Here we investigated the possibility that similar to Fap2, HopQ can also inhibit immune cell activities by interacting with CEACAM1. We used several approaches to confirm that HopQ indeed interacts with CEACAM1, and show that CEACAM1-mediated activation by HopQ, may inhibit NK and T cell functions.

15.
Sci Rep ; 9(1): 1351, 2019 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-30718650

RESUMO

Rheumatoid Arthritis (RA) causes chronic inflammation of joints. The cytokines TNFα and IFNγ are central players in RA, however their source has not been fully elucidated. Natural Killer (NK) cells are best known for their role in elimination of viral-infected and transformed cells, and they secrete pro-inflammatory cytokines. NK cells are present in the synovial fluids (SFs) of RA patients and are considered to be important in bone destruction. However, the phenotype and function of NK cells in the SFs of patients with erosive deformative RA (DRA) versus non-deformative RA (NDRA) is poorly characterized. Here we characterize the NK cell populations present in the blood and SFs of DRA and NDRA patients. We demonstrate that a distinct population of activated synovial fluid NK (sfNK) cells constitutes a large proportion of immune cells found in the SFs of DRA patients. We discovered that although sfNK cells in both DRA and NDRA patients have similar phenotypes, they function differently. The DRA sfNK secrete more TNFα and IFNγ upon exposure to IL-2 and IL-15. Consequently, we suggest that sfNK cells may be a marker for more severely destructive RA disease.


Assuntos
Artrite Reumatoide/imunologia , Artrite Reumatoide/patologia , Células Matadoras Naturais/imunologia , Líquido Sinovial/imunologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Artrite Reumatoide/sangue , Estudos de Casos e Controles , Feminino , Humanos , Interferon gama/metabolismo , Masculino , Pessoa de Meia-Idade , Fenótipo , Receptores de Células Matadoras Naturais/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
16.
Immunity ; 48(5): 951-962.e5, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29768178

RESUMO

Natural killer cells (NKs) are abundant in the human decidua, regulating trophoblast invasion and angiogenesis. Several diseases of poor placental development are associated with first pregnancies, so we thus looked to characterize differences in decidual NKs (dNKs) in first versus repeated pregnancies. We discovered a population found in repeated pregnancies, which has a unique transcriptome and epigenetic signature, and is characterized by high expression of the receptors NKG2C and LILRB1. We named these cells Pregnancy Trained decidual NK cells (PTdNKs). PTdNKs have open chromatin around the enhancers of IFNG and VEGFA. Activation of PTdNKs led to increased production and secretion of IFN-γ and VEGFα, with the latter supporting vascular sprouting and tumor growth. The precursors of PTdNKs seem to be found in the endometrium. Because repeated pregnancies are associated with improved placentation, we propose that PTdNKs, which are present primarily in repeated pregnancies, might be involved in proper placentation.


Assuntos
Memória Imunológica/imunologia , Células Matadoras Naturais/imunologia , Transcriptoma/imunologia , Útero/imunologia , Animais , Linhagem Celular Tumoral , Decídua/imunologia , Decídua/metabolismo , Feminino , Humanos , Interferon gama/imunologia , Interferon gama/metabolismo , Células Matadoras Naturais/metabolismo , Camundongos Endogâmicos C57BL , Camundongos SCID , Camundongos Transgênicos , Gravidez , Útero/citologia , Fator A de Crescimento do Endotélio Vascular/imunologia , Fator A de Crescimento do Endotélio Vascular/metabolismo
17.
Cell Rep ; 20(1): 40-47, 2017 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-28683322

RESUMO

Urinary tract infection (UTI) is the most common type of bacterial infection in humans. Fifty percent of all women will experience at least one UTI in their lifetime, with uropathogenic Escherichia coli (UPEC) accounting for 80% of reported cases. UTI evokes a complex, well-timed immune response that is crucial for bacterial clearance. The majority of immune cells participating in the immune response are absent from the healthy bladder, and the mechanisms used to recruit them upon UTI are not fully understood. Here, we show that immediately after UPEC infection, bladder epithelial cells secrete stromal cell-derived factor 1 (SDF-1), initiating immune cell accumulation at the site of infection. SDF-1 blockade significantly reduced immune cell migration to the infected bladder, resulting in severe exacerbation of infection. We also show that FimH, the adhesin of type 1 fimbria, one of UPEC's virulence factors, is directly involved in the secretion of SDF-1 upon UTI.


Assuntos
Quimiocina CXCL12/imunologia , Imunidade Inata , Infecções Urinárias/imunologia , Adesinas de Escherichia coli/imunologia , Animais , Quimiocina CXCL12/metabolismo , Escherichia coli Enteropatogênica/imunologia , Escherichia coli Enteropatogênica/patogenicidade , Feminino , Proteínas de Fímbrias/imunologia , Células Matadoras Naturais/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Neutrófilos/imunologia , Linfócitos T/imunologia , Infecções Urinárias/microbiologia , Urotélio/imunologia , Urotélio/metabolismo
18.
Cell Host Microbe ; 20(4): 527-534, 2016 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-27736647

RESUMO

Natural killer (NK) cells form an important arm of the innate immune system and function to combat a wide range of invading pathogens, ranging from viruses to bacteria. However, the means by which NK cells accomplish recognition of pathogens with a limited repertoire of receptors remain largely unknown. In the current study, we describe the recognition of an emerging fungal pathogen, Candida glabrata, by the human NK cytotoxic receptor NKp46 and its mouse ortholog, NCR1. Using NCR1 knockout mice, we observed that this receptor-mediated recognition was crucial for controlling C. glabrata infection in vitro and in vivo. Finally, we delineated the fungal ligands to be the C. glabrata adhesins Epa1, Epa6, and Epa7 and demonstrated that clearance of systemic C. glabrata infections in vivo depends on their recognition by NCR1. As NKp46 and NCR1 have been previously shown to bind viral adhesion receptors, we speculate that NKp46/NCR1 may be a novel type of pattern recognition receptor.


Assuntos
Antígenos Ly/metabolismo , Candida glabrata/imunologia , Proteínas Fúngicas/metabolismo , Células Matadoras Naturais/imunologia , Receptor 1 Desencadeador da Citotoxicidade Natural/metabolismo , Animais , Antígenos Ly/genética , Candidíase/imunologia , Modelos Animais de Doenças , Humanos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Receptor 1 Desencadeador da Citotoxicidade Natural/genética
19.
Oncoimmunology ; 4(9): e1038690, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26405611

RESUMO

Fusobacterium nucleatum is present in colon cancers where it was shown to generate a proinflammatory microenvironment that supports colorectal neoplasia progression. Remarkably, alongside with proinflammatory stimulation, fusobacteria also inhibit cytotoxicity of immune cells. Thus, it appears as if tumors exploit fusobacteria to generate a favorable proinflammatory and anti-cytotoxic microenvironment.

20.
PLoS One ; 10(2): e0118936, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25719382

RESUMO

Natural killer (NK) cells belong to the innate lymphoid cells. Their cytotoxic activity is regulated by the delicate balance between activating and inhibitory signals. NKp46 is a member of the primary activating receptors of NK cells. We previously reported that the NKp46 receptor is involved in the development of type 1 diabetes (T1D). Subsequently, we hypothesized that blocking this receptor could prevent or hinder disease development. To address this goal, we developed monoclonal antibodies for murine NKp46. One mAb, named NCR1.15, recognizes the mouse homologue protein of NKp46, named Ncr1, and was able to down-regulate the surface expression of NKp46 on primary murine NK cells following antibody injection in vivo. Additionally, NCR1.15 treatments were able to down-regulate cytotoxic activity mediated by NKp46, but not by other NK receptors. To test our primary assumption, we examined T1D development in two models, non-obese diabetic mice and low-dose streptozotocin. Our results show a significantly lower incidence of diabetic mice in the NCR1.15-treated group compared to control groups. This study directly demonstrates the involvement of NKp46 in T1D development and suggests a novel treatment strategy for early insulitis.


Assuntos
Anticorpos Bloqueadores/imunologia , Diabetes Mellitus Experimental/terapia , Células Matadoras Naturais/imunologia , Receptor 1 Desencadeador da Citotoxicidade Natural/imunologia , Animais , Anticorpos Bloqueadores/uso terapêutico , Linhagem Celular Tumoral , Células Cultivadas , Diabetes Mellitus Tipo 1/imunologia , Feminino , Humanos , Imunoterapia , Camundongos , Camundongos Endogâmicos C57BL , Receptor 1 Desencadeador da Citotoxicidade Natural/metabolismo , Transporte Proteico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...